Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Asakura, Atsushi (Ed.)Vascularized composite allografts (VCAs) refer to en bloc heterogenous tissue that is transplanted to restore form and function after amputation or tissue loss. Rat limb VCA has emerged as a robust translational model to study the pathophysiology of these transplants. However, these models have predominately focused on hindlimb VCAs which does not translate anatomically to upper extremity transplantation, whereas the majority of clinical VCAs are upper extremity and hand transplants. This work details our optimization of rat forelimb VCA procurement and sub-normothermic machine perfusion (SNMP) protocols, with results in comparison to hindlimb perfusion with the same perfusion modality. Results indicate that compared to hindlimbs, rat forelimbs on machine perfusion mandate lower flow rates and higher acceptable maximum pressures. Additionally, low-flow forelimbs have less cellular damage than high-flow forelimbs based on oxygen uptake, edema, potassium levels, and histology through 2 hours of machine perfusion. These results are expected to inform future upper extremity VCA preservation studies.more » « less
- 
            Introduction:The current liver organ shortage has pushed the field of transplantation to develop new methods to prolong the preservation time of livers from the current clinical standard of static cold storage. Our approach, termed partial freezing, aims to induce a thermodynamically stable frozen state at high subzero storage temperatures (−10°C to −15°C), while simultaneously maintaining a sufficient unfrozen fraction to limit ice-mediated injury. Methods and results:Using glycerol as the main permeating cryoprotectant agent, this research first demonstrated that partially frozen rat livers showed similar outcomes after thawing from either −10°C or −15°C with respect to subnormothermic machine perfusion metrics. Next, we assessed the effect of adding ice modulators, including antifreeze glycoprotein (AFGP) or a polyvinyl alcohol/polyglycerol combination (X/Z-1000), on the viability and structural integrity of partially frozen rat livers compared to glycerol-only control livers. Results showed that AFGP livers had high levels of ATP and the least edema but suffered from significant endothelial cell damage. X/Z-1000 livers had the highest levels of ATP and energy charge (EC) but also demonstrated endothelial damage and post-thaw edema. Glycerol-only control livers exhibited the least DNA damage on Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining but also had the lowest levels of ATP and EC. Discussion:Further research is necessary to optimize the ideal ice modulator cocktail for our partial-freezing protocol. Modifications to cryoprotective agent (CPA) combinations, including testing additional ice modulators, can help improve the viability of these partially frozen organs.more » « less
- 
            Background.In rodents, hydrogen sulfide (H2S) reduces ischemia-reperfusion injury and improves renal graft function after transplantation. Here, we hypothesized that the benefits of H2S are conserved in pigs, a more clinically relevant model. Methods.Adult porcine kidneys retrieved immediately or after 60 min of warm ischemia (WI) were exposed to 100 µM sodium hydrosulfide (NaHS) (1) during the hypothermic ex vivo perfusion only, (2) during WI only, and (3) during both WI and ex vivo perfusion. Kidney perfusion was evaluated with dynamic contrast-enhanced MRI. MRI spectroscopy was further employed to assess energy metabolites including ATP. Renal biopsies were collected at various time points for histopathological analysis. Results.Perfusion for 4 h pig kidneys with Belzer MPS UW + NaHS resulted in similar renal perfusion and ATP levels than perfusion with UW alone. Similarly, no difference was observed when NaHS was administered in the renal artery before ischemia. After autotransplantation, no improvement in histologic lesions or cortical/medullary kidney perfusion was observed upon H2S administration. In addition, AMP and ATP levels were identical in both groups. Conclusions.In conclusion, treatment of porcine kidney grafts using NaHS did not result in a significant reduction of ischemia-reperfusion injury or improvement of kidney metabolism. Future studies will need to define the benefits of H2S in human, possibly using other molecules as H2S donors.more » « less
- 
            Abstract In transplantation, livers are transported to recipients using static cold storage (SCS), whereby livers are exposed to cold ischemic injury that contribute to post-transplant risk factors. We hypothesized that flushing organs during procurement with cold preservation solutions could influence the number of donor blood cells retained in the allograft thereby exacerbating cold ischemic injury. We present the results of rat livers that underwent 24 h SCS after being flushed with a cold University of Wisconsin (UW) solution versus room temperature (RT) lactated ringers (LR) solution. These results were compared to livers that were not flushed prior to SCS and thoroughly flushed livers without SCS. We used viability and injury metrics collected during normothermic machine perfusion (NMP) and the number of retained peripheral cells (RPCs) measured by histology to compare outcomes. Compared to the cold UW flush group, livers flushed with RT LR had lower resistance, lactate, AST, and ALT at 6 h of NMP. The number of RPCs also had significant positive correlations with resistance, lactate, and potassium levels and a negative correlation with energy charge. In conclusion, livers exposed to cold UW flush prior to SCS appear to perform worse during NMP, compared to RT LR flush.more » « less
- 
            We demonstrate that ischemia-reperfusion injury occurs in all livers during NMP, though there are notable differences in gene expression between functional and nonfunctional livers. We further demonstrate that activation of the liver’s repair and homeostasis mechanisms through autophagy plays a vital role in the graft’s response to injury and may impact liver function. These findings indicate that liver autophagy might be a key therapeutic target for rehabilitating the function of severely injured or untransplantable livers.more » « less
- 
            Mukhopadhyay, Partha (Ed.)Ischemia reperfusion injury (IRI) is a critical problem in liver transplantation that can lead to life-threatening complications and substantially limit the utilization of livers for transplantation. However, because there are no early diagnostics available, fulminant injury may only become evident post-transplant. Mitochondria play a central role in IRI and are an ideal diagnostic target. During ischemia, changes in the mitochondrial redox state form the first link in the chain of events that lead to IRI. In this study we used resonance Raman spectroscopy to provide a rapid, non-invasive, and label-free diagnostic for quantification of the hepatic mitochondrial redox status. We show this diagnostic can be used to significantly distinguish transplantable versus non-transplantable ischemically injured rat livers during oxygenated machine perfusion and demonstrate spatial differences in the response of mitochondrial redox to ischemia reperfusion. This novel diagnostic may be used in the future to predict the viability of human livers for transplantation and as a tool to better understand the mechanisms of hepatic IRI.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
